New approach to AI-77B : stereoselective construction of a potential precursor of the amino acid side chain

C hisato M ukai,* M otonori M iyakawa and M iyoji H anaoka*

Faculty of Pharamaceutical Sciences, K anazawa U nivesity, Takara-machi, K anazawa 920, J apan

Abstract

A potential precursor of the amino acid side-chain derivative of antiulcerogenic antibiotic AI-77B is prepared in a highly stereoselective manner from the anti-aldol product 3, obtained from the reaction of the chiral benzaldehydechromium (0) complex 2.

Introduction

AI-77B 1, a representative to the group of antibiotics known as the AI-77s, has been isolated from Bacillus pimilus ${ }^{1}$ and shown to possess potent antiulcerogenic action against stress ulcer in rats without any anticholinergic, antihistaminergic or central suppressive effects. ${ }^{2}$ Several groups ${ }^{3}$ have so far accomplished total synthesis of AI-77B 1 via the coupling reaction

between a dihydroisocoumarin moiety and an amino sidechain portion. Some alternative methods for the preparation of both dihydroisocoumarin derivatives ${ }^{4}$ and the protected amino acid tethers ${ }^{5}$ have also been developed.

Recent efforts from this laboratory ${ }^{6}$ have explored highly anti-selective aldol reactions of the chiral tricarbonyl $\left[\eta^{6}-0\right.$ (trimethylsilyl)benzaldehydejchromium(0) complex $\mathbf{2}$ with enolsilanes or titanium enolates. By taking advantage of these highly stereoselective aldol reactions as a crucial step, we have completed syntheses of several bioactive compounds. ${ }^{66,7} \mathrm{H}$ ere we describe an additional example, namely the successful application of the newly developed anti-selective aldol reaction to a highly stereocontrolled construction of an amino acid sidechain analogue of AI-77B.

Results and discussion

At the inception of this program, highly stereoselective twocarbon elongation of the anti-aldol products 3, ${ }^{\text {7a }}$ prepared from the aldol reaction of aldehyde $\mathbf{2}$, was first investigated by employingracemicerythrothioester 3 . Treatment of (\pm)-3(anti : syn = $95: 5$) with diisobutylaluminium hydride (DIBAL-H) gave the corresponding aldehyde, which was subsequently exposed to aldol reactin with the 0,5 -ketal 4 under chelation-controlled conditions ${ }^{8}$ in the presence of tin(iv) chloride $\left(\mathrm{SnCl}_{4}\right)$ to produce (\pm)-3,4-syn-aldol product 5 in 53% yield as expected (Scheme 1). The formation of the desired 3,4-syn-product 5 from substrate $\mathbf{3}$ can be interpreted in terms of the chelationcontrolled transition state on the basis of a Felkin-A nh chelated model ${ }^{9}$ as shown in Fig. 1.

In order to confirm the relative stereochemistry of product 5, we transformed it into the corresponding six-membered acetonide 6. Desilylation of compound 5 with sodium iodide and boron trifluoride-diethyl ether $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$ provided the diol,

Scheme 1 Reagents: a, DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; b, \mathrm{SnCl}_{4}, 4 ; c, \mathrm{Nal}$, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{3} \mathrm{CN} ; \mathrm{d}, \mathrm{Me}_{2} \mathrm{C}(\mathrm{OM} \mathrm{e})_{2}$, PPTS

Fig. 1
which was converted into the acetonide (\pm)-6 in 71% overall yield on treatment with 2,2-dimethoxypropane and pyridinium toluene-p-sulfonate (PPTS). A careful examination of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 disclosed that the coupling constant between H^{3} and H^{4} is 4.4 Hz , while that between H^{4} and H^{5} is 7.3 Hz . This observation obviously indicated that the smaller coupling constant should be due to equatorial-axial or equatorial-equatorial coupling, and that the larger one should be attributed to axial-axial coupling. This diagnostic analysis of coupling constants is in good accord with the preferred conformation of compound $\mathbf{6}$. Chemical modification of alcohol $\mathbf{5}$
into acetonide 6 enabled us to establish the relative stereochemistry of compound 5 unambiguously.

A ccording to the procedure that resulted in a series of racemates, we next synthesized optically pure (-)-5 ${ }^{10}$ in 58% overall yield from thenon-racemic starting material $\mathbf{3}$ (anti :syn =95:5). Direct reduction of the thioester group of compound $\mathbf{5}$ with several hydride reagents such as $\mathrm{LiAlH}_{4}, \mathrm{LiAlH}(\mathrm{OM} \mathrm{e})_{3}$ and LiBH_{4} was troublesome and gave the desired primary hydroxy compound in only poor yield and/or as an intractable mixture. We tentatively surmised that these results might result from the free β-hydroxy functionality of compound 5 . Therefore, the free hydroxy group of compound (-)-5 was first protected with a trimethylsilyl (TM S) group to afford the TM S derivative, which was consecutively exposed to the following reactions: (i) reduction with DIBAL-H, (ii) reduction with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$, (iii) desilylation, (iv) introduction of a tert-butyldimethylsilyl (TBDMS) group on the resulting primary hydroxy functionality to yield diol (-)-7 in 91\% overall yield from 5. Upon treatment under Birch conditions, diol 7 underwent debenzylation to produce the triol, acetalization of which with 2,2-dimethoxypropane and PPTS for 2 h at room temperature gave the acetonides 8 and 9 in 56 and 21% yield, respectively (Scheme 2). Thermodynamic consideration of these acetonides

Scheme 2 Reagents: a, TM S-imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ b, DIBAL-H $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{c}, \mathrm{NaBH} 4, \mathrm{MeOH} ; \mathrm{d}, \mathrm{TBAF}, \mathrm{THF} ; \mathrm{e}, \mathrm{TBDM} \mathrm{SCI}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{f}, \mathrm{Na}$, liq. $\mathrm{NH}_{3} ; \mathrm{g}, \mathrm{Me} \mathrm{e}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS, DMF; h, PTTS, $\mathrm{CH}_{3} \mathrm{CN}$

8 and 9 led to the insight that isomer 8 would be thermodynamically preferred over 9 because there is an unfavourable non-bonding interaction between two cis-oriented substituents on a fixed five-membered ring in structue 9. However, this would not be the case in isomer 8 where two appendages on a fixed five-membered ring are trans. A s a result, easy isomerization of 9 to 8 would be expected. A ctually, treatment of crude compound 9 under similar acetalization conditions for a prolonged reaction time (8 h) provided isomer 8 in 83% yield. Thus, exclusive formation arabino of isomer 8 from diol 7 was attained in 73% overall yield.

Successive protection of the hydroxy moiety with a benzoyl group and removal of the TBDMS group of compound 8 furnished primary alcohol (+)-10 in 73% yield. Tetrahydrofuran (THF)-ring formation was achieved by oxidation of the primary alcohol of compound $\mathbf{1 0}$, followed by deacetalization in
methanol to give acetal $\mathbf{1 1}$ in 81% yield as a mixture of two diastereoisomers. Introduction of amino functionality at the C-4 position of 11 with inversion of configuration was undertaken as follows. The tetrahydrofuran derivative $\mathbf{1 1}$ was converted into the corresponding mesyl ester, which was then exposed to sodium azide in dimethylformamide (DMF) to afford the azido derivative with inverted stereochemistry at the C-4 position. Treatment of the resulting azido compound with m-chloroperbenzoic acid (MCPBA) in the presence of BF_{3}. $\mathrm{OEt}{ }_{2}{ }^{11}$ effected generation of the γ-lactone moiety to provide derivative 12 in 66\% yield (Scheme 3).

Scheme 3 Reagents: $\mathrm{a}, \mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; b$, TBAF-HF, THF; c , $\mathrm{Py} \cdot \mathrm{SO}_{3}, \mathrm{DM} \mathrm{SO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{d}, 10 \% \mathrm{HCl}, \mathrm{MeOH} ; \mathrm{e}, \mathrm{M} \mathrm{sCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{f}, \mathrm{NaN} 3, \mathrm{DMF} ; \mathrm{g}, \mathrm{MCPBA}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; h, \mathrm{RuO}_{2}$, NaIO_{4}, aq. $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{AcOEt}$; i, DCC, HOBt, DM F

The final requirement for synthesis of the target amino acid derivative $\mathbf{1 3}$ is transformation of a phenyl moiety into a carboxylic acid functionality. Oxidative cleavage of the benzenering of compound 12 was performed under Sharpless conditions ${ }^{12}$ with ruthenium tetraoxide ${ }^{13}$ producing the desired carboxylic acid derivative $\mathbf{1 3}$. Owing to the relative difficulty of its isolation, acid 13 was, without isolation, condensed with the dihydroisocoumarin derivative $14^{3 \mathrm{a}}$ to yield amide (-)-15 in 38% overall yield from compound 12. It should be mentioned that amide $\mathbf{1 5}$ has all the carbon framework with the proper stereochemistry required for AI-77B, although we have not carried compound $\mathbf{1 5}$ any further. ${ }^{14}$
Thus, we have developed a new procedure for the construction of the amino acid sidechain analogue of A I-77B by taking advantage of the two chiral stereogenic centres of the antialdol product derived from a highly selective aldol reaction of the chiral tricarbonyl[η^{6}-0-(trimethylsilyl)benzaldehyde]chromium(0) complex 2.

Experimental

M ps were determined on a Yanagimoto micro melting-point
apparatus and are uncorrected. IR Spectra were measured on samples in CHCl_{3} with a JASCO A-102 spectrometer; mass spectra with Hitachi M - 80 and JEOL JM S-SX 102 A mass spectrometers; ${ }^{1} \mathrm{H}$ NM R spectra with JEOL EX-270 and JEOL JNM -GX 500 spectrometers for samples in CDCl_{3}, using either tetramethylsilane as an internal standard for compounds that have no silyl group or $\mathrm{CHCl}_{3}(\delta 7.26)$ for compounds possessing the silyl group; ${ }^{13} \mathrm{C}$ NM R spectra with JEOL EX-270 and JEOL JNM-GX 500 spectrometers for sample in CDCl_{3} with CDCl_{3} ($\delta_{\mathrm{c}} 77.0$) as an internal reference All J values are in Hz and $[a]_{\mathrm{D}}$ values in 10^{-1} deg $\mathrm{dm}^{2} \mathrm{~g}^{-1}$.
M ethylene dichloride was freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, and THF from sodium-benzophenone prior to use. All reactions were carried out under nirogen. Silica gel (silica gel 60, 230-400 mesh, N acalai Tesque) was used for chromatography. Organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

S-tert-B utyl ($\left.3 \mathrm{R}^{*}, 4 \mathrm{4} *, 5 \mathrm{R} *\right)$-4-benzyloxy-5-(tert-butyldimethyl-
siloxy)-3-hydroxy-5-phenylpentanethioate (\pm)-5 siloxy)-3-hydroxy-5-phenylpentanethioate (\pm)-5
DIBAL-H in toluene ($1.00 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.28 \mathrm{~cm}^{3}, 0.28 \mathrm{mmol}$) was added to a solution of compound (\pm)- $3^{7 \mathrm{a}}$ (a mixture of anti : $\mathrm{syn}=95: 5 ; 51.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dry methylene dichloride $\left(1.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. A fter being stirred for 15 min , the reaction mixture was qenched by addition of saturated aq. Rochelle salt ($1.5 \mathrm{~cm}^{3}$) and passed through a short pad of Celite. The organic layer was washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in dry methylene dichloride ($1.5 \mathrm{~cm}^{3}$), to which the 0,5 -acetal $4^{15}(30.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added. A solution of SnCl_{4} in methylene dichloride ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.12 \mathrm{~cm}^{3}, 0.12$ mmol) was added dropwise to the solution at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at the same temperature, then quenched by addition of saturated aq. ammonium chloride ($1.5 \mathrm{~cm}^{3}$) and diluted with methylene dichloride. Theorganic layer was washed successively with water and brine, dried and concentrated to leave a residual oil, which was chromatographed with hexane-ethyl acetate ($15: 1$) to give title compound (\pm)-5 ($30.0 \mathrm{mg}, 53 \%$) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and $1675(\mathrm{CO}) ; \delta_{\mathrm{H}} 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{ArH}), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8, \mathrm{ArH})$, 7.30-7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.08-7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.82(1 \mathrm{H}, \mathrm{d}$, J 7.3, 5-H), 4.39 ($1 \mathrm{H}, \operatorname{ddd}, \mathrm{J} 2.0,5.4$ and $8.3,3-\mathrm{H}$), 4.22 and $4.00(2 \mathrm{H}, \mathrm{A} \mathrm{B}-\mathrm{q}, \mathrm{J} 10.7$, benzylic H), $3.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.0$ and 7.3, 4-H) $2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and $14.7,2-\mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 5.4 and 14.7, 2-H), $1.45\left(9 \mathrm{H}, \mathrm{s}, ~ B u^{t}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.08$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$) and -0.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$); $\delta_{\mathrm{c}} 198.4,142.2,137.5,128.4$, 128.2, 128.1, 127.8, 127.7, 127.3, 83.9, 74.6. 73.9, 67.8, 49.0, 48.1, 29.8, 25.8, 18.0, -4.6 and -5.2 ; m / z (fast-atom bombardment) (FAB) 503 ($\mathrm{M}^{+}+1,1.7 \%$), 221 (59), 161 (8) and 91 (100).

S-tert-B utyl (3R*,4S*,5R*)-4-benzyloxy-3,5-isopropylidene-

 dioxy-5-phenylpentanethioate (\pm)-6To a solution of compound $5(50.9 \mathrm{mg}, 0.10 \mathrm{mmol})$ and sodium iodide ($46.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry acetonitrile ($1.0 \mathrm{~cm}^{3}$) was added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in dry methylene dichloride (1.00 $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 0.20 \mathrm{~cm}^{3}, 0.20 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min before being diluted with ethyl acetate, and the mixture was washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in 2,2-dimethoxypropane ($1.0 \mathrm{~cm}^{3}$), PPTS ($1.9 \mathrm{mg}, 0.01$ mmol) was added at room temperature, and the mixture was stirred for 1 h before being quenched by addition of saturated aq. NaHCO_{3}, diluted with water and extracted with ethyl acetate. The organic layer was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residual oil with hexane-ethyl acetate ($15: 1$) afforded title compound (\pm)-6 ($30.2 \mathrm{mg}, 71 \%$) as an oil (Found: C, 70,1; H, 7.3. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 7.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1675(\mathrm{CO}) ; \delta_{\mathrm{H}}$ 7.44-7.11 ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3,5-\mathrm{H}$), $4.59(1 \mathrm{H}$, ddd, J 4.4, 6.3 and $7.3,3-\mathrm{H}$), 4.26 and 4.05 ($2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{J} 11.2$,
benzylic H), 3.18(1 H, dd, J 4.4 and 7.3, 4-H), 2.91 (1 H , dd, J 7.3 and $15.6,2-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and 15.6, 2-H), 1.46 (12 $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$ and Me) and 1.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$); δ_{c} 198.1, 140.7, 137.7, $128.6,128.2,128.1,127.9,127.6,127.4,101.5,82.6,75.4,73.6$, 68.1, 48.1 and 44.3 ; m/z (FA B) $429\left(\right.$ M $\left.^{+}+1,15 \%\right)$, 393 (30), 371 (24), 349 (26), 307 (28), 211 (24) and 161 (39).

S-tert-B utyl (3R,4S,5R)-4-benzyloxy-5-(tert-butyldimethyl-siloxy)-3-hydrox y-5-phenyIpentanethioate (-)-5
According to the procedure described for the preparation of racemate (\pm)-5, compound (-)-5 ($542 \mathrm{mg}, 58 \%$) was obtained from the optically active substrate 3 (a mixture of anti: syn = $95: 5 ; 858 \mathrm{mg}$). Product (-)-5 was an oil (Found: $\mathrm{C}, 66.9 ; \mathrm{H}, 8.4$. $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}{ }_{4} \mathrm{SSi}$ requires C, 67.1; H, 8.4\%); [$\left.a\right]_{\mathrm{D}}^{22}-23.4$ (c 0.51 , CHCl_{3}).

(1R ,2S,3R)-2-B enzyloxy-5-(tert-butyIdimethyIsiloxy)-1,3-dihydroxy-1-phenylpentane (-)-7

To a solution of thioester (-)-5 ($852 \mathrm{mg}, 1.47 \mathrm{mmol}$) in dry methylene dichloride ($15 \mathrm{~cm}^{3}$) was added TM S-imidazole (0.25 $\mathrm{cm}^{3}, 1.47 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 15 min , diluted with methylene dichloride, washed with water, dried and concentrated to dryness. The residue was dissolved in dry methylene dichloride ($15 \mathrm{~cm}^{3}$), to which a solution of DIBAL-H in toluene ($1.00 \mathrm{~mol} \mathrm{dm}^{-3} ; 3.3$ $\mathrm{cm}^{3}, 3.30 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. A fter being stirred for 15 min , the reaction mixture was qenched by addition of saturated aq. Rochelle salt ($1.5 \mathrm{~cm}^{3}$) and passed through a short pad of Celite. The organic layer was washed successively with water and brine, dried and concentrated to dryness. $\mathrm{NaBH}_{4}(56.0 \mathrm{mg}$, 1.47 mmol) was added to a solution of the residue in methanol $\left(15 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stored for 30 min at room temperature. M ethanol was evaporated off and the residue was taken up in methylene dichloride, which was washed with water, dried and the solution was concentrated to dryness. The residue was dissolved in THF ($15 \mathrm{~cm}^{3}$). A solution of tetrabutylammonium fluoride (TBAF) in THF ($1.00 \mathrm{~mol} \mathrm{dm}^{-3} ; 4.0 \mathrm{~cm}^{3}$, 4.00 mmol) was added to the solution at room temperature. After being stirred for 30 min , the reaction mixture was quenched by addition of water and extracted with ethyl acetate. The organic layer was washed with water, dried and concentrated to leave a residual oil, wich was dissolved in methylene dichloride ($5.0 \mathrm{~cm}^{3}$). Triethylamine ($0.60 \mathrm{~cm}^{3}, 4.4 \mathrm{mmol}$), 4-(dimethylamino)pyridine (D M AP) ($12.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) and TBDM SCI ($332 \mathrm{mg}, 2.2 \mathrm{mmol}$) were successively added to the solution at room temperature. The reaction mixturewas kept for 8 h and then were washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane-ethyl acetate ($15: 1$) afforded title compound (-)-7 ($622 \mathrm{mg}, 91 \%$) as an oil (Found: C, 69.2; H, 8.7. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ requires C, 69.2; $\mathrm{H}, 8.8 \%$); $[a]_{0}^{19}-11.9$ (c 0.50 , CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 7.41(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{ArH}), 7.35$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{ArH}$), 7.33-7.27 (4 H, m, ArH) , 7.16-7.15 (2 H, m, ArH), $5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,1-\mathrm{H}), 4.45$ and $4.36(2 \mathrm{H}, \mathrm{AB}-\mathrm{q}, \mathrm{J}$ 11.2, benzylic H), 4.07-4.04 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.88-3.84 ($1 \mathrm{H}, \mathrm{m}$, 2-H), 3.75-3.71 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9$ and 6.4 , 5-H), 2.00-1.93 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 1.67-1.60 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 0.84 (9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}} 142.0$, 137.7, 128.3, 128.2, 128.1, 127.8, 126.7, 82.6, 73.9, 72.8, 71.4, 62.1, 34.8, 25.8, 18.1, -5.3 and -5.6; m/z (FA B) 417 ($\mathrm{M}^{+}+1$, $20 \%), 381$ (4), 235 (9), 189 (100) and 131 (100).

(1R , 2R , 3R)-5-(tert-B utyldimethylsiloxy)-1-hydroxy-2,3-iso-propylidenedioxy-1-phenylpentane (-)-8

To a solution of diol (-)-7 ($620 \mathrm{mg}, 1.49 \mathrm{mmol}$) in THF (5.0 cm^{3}) were added liquid ammonia (ca. $10 \mathrm{~cm}^{3}$) and sodim metal ($200 \mathrm{mg}, 8.70 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stored for 30 min at the same temperature. Solid ammonium chloride (100 mg) was added to the reaction mixture, which was then gradually warmed to room temperature The residue was
taken up in ethyl acetate, which solution was washed succes sively with water and brine, dried and concentrated to dryness. The residue was dissolved in DMF ($2.0 \mathrm{~cm}^{3}$), and $2,2-$ dimethoxypropane ($2.0 \mathrm{~cm}^{3}$) and PPTS ($32.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) were added to the solution. The reaction mixture was stirred at room temperature for 2 h , quenched by addition of water and extracted with ethyl acetate. The extract was washed successively with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-ethyl acetate ($10: 1$) to afford acetonides (-)-8 ($306 \mathrm{mg}, 56 \%$) and $9(115 \mathrm{mg}$, 21%). Isomer (-)-8 was an oil (Found: C, 65.6; H, 9.35 $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$ requires C, 65.6; $\mathrm{H}, 9.3 \%$); $[a]_{0}^{19}-7.6$ (c 0.43 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{OH}) ; \delta_{\mathrm{H}} 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{ArH})$, $7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{ArH}), 4.93(1 \mathrm{H}, \mathrm{d}$, J 4.4, 1-H), $4.13(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2.9$ and $8.3,3-\mathrm{H}), 3.93(1 \mathrm{H}$, dd, J 4.4 and $8.3,2-\mathrm{H}), 3.64-3.55\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.47-1.40(1 \mathrm{H}, \mathrm{m}$, 4-H), 1.39 ($6 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e} \times 2$), 1.18-1.12 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 0.87 (9 H , s, But), $0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$) and $-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}} 139.01$, $128.3,127.8,127.4,126.2,108.5,83.9,73.6,72.6,59.9,37.0$ $27.4,26.9,25.9,25.8,18.3,-5.4$ and $-5.5 ; \mathrm{m} / \mathrm{z} 366$ ($\mathrm{M}^{+}, 0.2 \%$), 348 (4), 273 (15), 233 (16), 145 (39), 131 (100) and 101 (58).

Compound 9 was an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 7.50(2 \mathrm{H}$, d, J 6.8, ArH), $7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8$, ArH), 4.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3,1-\mathrm{H}$), 4.06 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.9,5.4$ and 9.3 , $3-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.9$ and $7.3,2-\mathrm{H}$), $3.84(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 4.4$ and $10.8,5-\mathrm{H}$), $3.66(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2.4$ and $10.8,5-\mathrm{H}$), 2.11-2.03 (1 H , m, 4-H), 1.86-1.80 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.42(3 \mathrm{H}, \mathrm{s}$, $\mathrm{M} \mathrm{e}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{c}} 141.1,128.3,127.4,126.2,101.2,75.4,74.6,70.5,60.0,31.8$, $25.8,24.5,24.1,18.1$ and -5.6 .

The crude product 9 ($115 \mathrm{mg}, 0.31 \mathrm{mmol}$) was treated with PPTS ($3.3 \mathrm{mg}, 0.015 \mathrm{mmmol}$) in dry acetonitrile ($1.5 \mathrm{~cm}^{3}$) at room temperature for 8 h to furnish isomer (-)-8 (95 mg , $83 \%)$. Thus, the total yield of (-)-8 from (-)-7 was 73%.

(1R,2S,3R)-1-Benzoyloxy-5-hydroxy-2,3-isopropylidenedioxy-1phenylpentane (+)-10

To a solution of silyl ether (-)-8 ($244 \mathrm{mg}, 0.67 \mathrm{mmol}$) in dry methylene dichloride ($4.0 \mathrm{~cm}^{3}$) were added triethylamine (0.28 $\mathrm{cm}^{3}, 0.20 \mathrm{mmol}$), DMAP ($12.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) and benzoyl chloride ($0.12 \mathrm{~cm}^{3}, 1.00 \mathrm{mmol}$) at room temperature. The reaction mixture was stored at the sametemperature for 8 h , washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in THF ($4.0 \mathrm{~cm}^{3}$) and a solution of TBAF and hydrofluoric acid in aq. THF $\left(0.5 \mathrm{~cm}^{3}\right.$, prepared from $1.8 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ TBAF in THF solution and $0.1 \mathrm{~cm}^{3}$ of 47% hydrofluoric acid) was added to the solution. The reaction mixture was stirred at room temperature, diluted with ethyl acetate, washed successively with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-ethyl acetate (3:2) to afford title compound (+)-10 (174 mg, 73\%) as an oil (Found: C, 70.1; H, 6.8. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $\mathrm{C}, 69.7 ; \mathrm{H}, 6.9 \%$); $[a]_{\mathrm{D}}^{22}+23.0$ (c 0.50 , $\mathrm{CHCl}_{3} ; v_{\text {max }} / \mathrm{cm}^{-1} 3550(\mathrm{OH})$ and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}} 8.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3, ArH), 7.61-7.29 (8 H , m, ArH), 6.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.4,1-\mathrm{H}$), $4.29(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 3.2$ and $7.8,3-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.4$ and 7.8 , 2H), 3.74-3.71 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 1.76-1.68 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 1.65$1.58(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$ and $1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}}$ $165.3,136.5,133.5,133.3,130.1,129.8,129.7,128.6,128.5$, 128.4, 127.0, 109.7, 82.7, 77.1, 75.1, 60.6, 35.9, 27.4 and 26.7; $\mathrm{m} / \mathrm{z} 365\left(\mathrm{M}^{+}, 1 \%\right), 343$ (13), 213 (6), 179 (16), 165 (100) and 151 (9).

($2 S, 3 R, 5 R, 1$ 'R)- and ($2 S, 3 R, 5 S, 1^{\prime} R$)-2-(1^{\prime}-Benzoyloxy-1'-phenylmethyl)-3-hydroxy-5-methoxytetradrofuran 11

To a solution of acetonide (+)-10 ($163 \mathrm{mg}, 0.46 \mathrm{mmol}$) in dry methylene dichloride ($5.0 \mathrm{~cm}^{3}$) were added triethylamine (0.26 $\mathrm{cm}^{3}, 1.84 \mathrm{mmol}$), dimethyl sulfoxide (D M SO) ($0.5 \mathrm{~cm}^{3}$) and sulfur trioxide-pyridine complex ($\mathrm{Py} \cdot \mathrm{SO}_{3}$) $(221 \mathrm{mg}, 1.38 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for

15 min, washed with water, dried and concentrated to dryness. The residue was dissolved in methanol ($4.0 \mathrm{~cm}^{3}$). 10\% Aq. hydrochloric acid $\left(0.10 \mathrm{~cm}^{3}\right)$ was added to the solution and the reaction mixture was kept at room temperature for 8 h . M ethanol was evaporated off to leave a residual oil, which was taken up in ethyl acetate. The ethyl acetate solution was washed successively with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-ethyl acetate ($3: 1$) to afford title compound 11 ($123 \mathrm{mg}, 81 \%$, as a mixture of two diastereoisomers in the ratio 73:27) to afford title compound 11 ($123 \mathrm{mg}, 81 \%$, as a mixture of two diastereoisomers in the ratio 73:27) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and 1720 (CO); $\delta_{\mathrm{H}} 8.06$ ($2 \mathrm{H}, \mathrm{dd}$, J 0.7 and 7.3, ArH), 7.61-7.32 (8 H, m, ArH), 6.20 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2,1^{\prime}-\mathrm{H}\right)$, 5.17 ($73 / 100 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.4$ and $5.9,5-\mathrm{H}), 5.03(27 / 100 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.3,5-\mathrm{H}), 4.43-4.26(2 \mathrm{H}, \mathrm{m}$, 2- and $3-\mathrm{H}$), 3.34 ($81 / 100 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.18 ($219 / 100 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$) and 2.34-2.05 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$.

(3S,4S,1'R)-3-A zido-4-(1'-benzoyloxy-1'-phenylmethyl)-4butanolide (+)-12

To a solution of acetal $11(123 \mathrm{mg}, 0.37 \mathrm{mmol})$ in dry methylene dichloride ($4.0 \mathrm{~cm}^{3}$) were successively added triethylamine $\left(0.10 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}\right)$ and methanesulfonyl chloride $\left(0.04 \mathrm{~cm}^{3}\right.$, 1.56 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 30 min , diluted with methylene dichloride, washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in DM F ($4.0 \mathrm{~cm}^{3}$). Sodium azide ($247 \mathrm{mg}, 3.70 \mathrm{mmol}$) was added to the solution and the reaction mixture was heated at $130^{\circ} \mathrm{C}$ for 8 h . A fter cooling, the reaction mixture was diluted with water and extracted with ethyl acetate. The extract was washed successively with water and brine, dried and concentrated to dryness. To a solution of the residue and M CPBA ($71 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry methylene dichloride $\left(4.0 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in dry methylene dichloride $\left(1.00 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.40 \mathrm{~cm}^{3}\right.$, 0.40 mmol) at room temperature. The reaction mixture was stirred at room temperature for 30 min , diluted with methylene dichloride, washed successively with saturated aq. NaHCO_{3}, water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-ethyl acetate ($3: 1$) to afford title lactone (+)-12 ($82.0 \mathrm{mg}, 66 \%$) as an oil (Found: C, 64.1; H, 4.5; $\mathrm{N}, 12.5 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 64.2; $\mathrm{H}, 4.6 ; \mathrm{N}, 12.3 \%$); $[a]_{0}^{24}+55.0\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2100\left(\mathrm{~N}_{3}, 1790(\mathrm{CO})\right.$ and 1720 (CO); $\delta_{\mathrm{H}} 8.06$ (2 H, d, J 7.3, ArH), 7.62 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, ArH), 7.50-7.38 (7 H, m, ArH), 6.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9,1^{\prime}-\mathrm{H}$), 4.80 $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.4$ and $3.9,4-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.4,3.9$ and 8.3 , $3-\mathrm{H}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and $18.6,2-\mathrm{H})$ and $2.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.9$ and 18.6, 2-H ; ; $\delta_{\mathrm{c}} 172.9,165.0,134.0,133.8,129.8,129.7,129.3$, 129.2, 129.1, 128.7, 126.6, 85.4, 74.7, 57.1 and $34.5 ; \mathrm{m} / \mathrm{z} 337$ (M^{+}, $0.5 \%), 308(1), 248(14), 211(52), 172$ (38) and 105 (100).

(3S) $-3-\left[\left(1^{\prime} \mathrm{S}\right)-1^{\prime}-\left\{\left(2^{\prime \prime} \mathrm{S}\right)-2^{\prime \prime}-\left[\left(2^{\prime \prime \prime} \mathrm{S}, 3^{\prime \prime \prime} \mathrm{S}\right)-3^{\prime \prime \prime}-\right.\right.\right.$ A zido- $5^{\prime \prime \prime}-$ oxotetra-hydrofuran- $\mathbf{2}^{\prime \prime}$-yl\} $2^{\prime \prime}$-benzoyloxyacetamido\}-3'-methylbutyl\} 3,4-dihydro-8-hydroxy-1H -2-benzopyran-1-one (-)-15

Ruthenium dioxide ($1.2 \mathrm{mg}, 9.0 \times 10^{-3} \mathrm{mmol}$) was added to a two-phase solution of compound (+)-12 ($31.0 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $\mathrm{NaIO}_{4}(288 \mathrm{mg}, 1.35 \mathrm{mmol})$ in ethyl acetate $\left(1.0 \mathrm{~cm}^{3}\right)$, acetonitrile ($1.0 \mathrm{~cm}^{3}$) and distilled water ($1.5 \mathrm{~cm}^{3}$) under vigorous stirring. Stirring was continued for 48 h at room temperature. The reaction mixture was diluted with ethyl acetate, and was washed successively with water and brine, dried and passed through a short pad of Celite The filtrate was concentrated to dryness and the residue was dissolved in DM F (1.0 cm^{3}). N,N-D icyclohexylcarbodiimide (DCC) ($28.0 \mathrm{mg}, 0.14$ mmol) and 1-hydroxybenzotriazole (HOBt) ($24.5 \mathrm{mg}, 0.18$ mmol) were added to the solution. The reaction mixture was stirred for 30 min at room temperature and the resulting precipitate was filtered off by suction. Compound $14(30.0 \mathrm{mg}$, $0.12 \mathrm{mmol})$ and triethylamine $\left(0.02 \mathrm{~cm}^{3}, 0.14 \mathrm{mmol}\right)$ were added to the filtrate and the reaction mixture was stirred for 2 h at
room temperature before being diluted with ethyl acetate, washed successively with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane-ethyl acetate ($3: 1$) to afford title amide (-)- $\mathbf{- 1 5}$ (18.5 mg , 38%) as an oil (Found: C, 60.7; H, 5.3; N, 10.5. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 60.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 10.4 \%)$; $[a]_{D}^{19}-72.2\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 2100\left(\mathrm{~N}_{3}\right), 1790(\mathrm{CO}), 1730(\mathrm{CO}), 1670(\mathrm{CO})$ and 1620 (CO); $\delta_{\mathrm{H}} 10.64(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{ArH}), 7.65(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J} 7.8, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.3, \mathrm{ArH})$, $6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH}), 6.41(1 \mathrm{H}, \mathrm{d}$, J 9.8, N H), 5.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,2^{\prime \prime}-\mathrm{H}$), 4.90 (1 H , ddd, J 4.4, 4.9 and $\left.8.33^{\prime \prime \prime}-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4\right.$ and $\left.4.4,2^{\prime \prime \prime}-\mathrm{H}\right), 4.58-4.75$ (1 H, m, 3-H), 4.38-4.33 ($\left.1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 3.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and 18.1, 4"'-H), 3.04-3.01 ($1 \mathrm{H}, \mathrm{m}$, benzylic H), 2.82-2.78 ($1 \mathrm{H}, \mathrm{m}$, benzylic H), $2.62\left(1 \mathrm{H}\right.$, dd, J 4.9 and 18.1, $4^{\prime \prime \prime}-\mathrm{H}$), 1.86-1.81 (1 H, m, 2'-H), 1.63-1.60 (1 H, m, 3'-H), 1.47-1.44 (1 H, m, 2'-H), 0.95 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{Me}$) and $0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{Me}) ; \delta_{\mathrm{c}} 173.1$, 169.6, 165.9, 162.9, 162.3, 138.6, 136.1, 135.8, 135.1, 130.9, $129.5,128.2,119.9,118.6,107.1,83.8,80.1,73.7,56.8,49.9$, 41.1, 35.0, 30.0, 25.1, 24.6 and 21.6.

References

1 Y. Shimojima, H.H ayashi, T. Ooka, M. Shibukawa and Y. Iitaka, Tetrahedron Lett., 1982, 23, 5435; Y. Shimnojima, H. H ayashi T. Ooka and M. Shibukawa, A gric. Biol. Chem., 1982, 46, 1823; Tetrahedron, 1984, 40, 2519.
2 Y. Shimojima and H. Hayashi, J. M ed. Chem., 1983, 26, 1370; Y. Shimojima, T. Shirai, T. Baba and H. H ayashi, J. M ed. Chem., 1985, 28, 3.
3 (a) Y. H amada, A . K awai, Y. K ohno, O. H ara and T. Shioiri, J. A m. Chem. Soc., 1989, 111, 1524; Y. Hamada, O. H ara, A. K awai, Y. Kohno and T. Shioiri, Tetrahedron, 1991, 47, 8635; (b) S. D. Broady, J. E. Rexhausen and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1991, 708; (c) R. A. Ward and G. Procter, Tetrahedron Lett., 1992, 33, 3359; Tetrahedron, 1995, 51, 12301 (d) J.-M . D urgnat and P. Vögel, H elv. C him. A cta, 1993, 76, 222.

4 H. K otsuki, A. M iyazaki and M. Ochi, Chem. Lett., 1992, 1255; L. Bertelli, R . Fiaschi and E. N apolitano, Gazz. Chim. Ital., 1993,

123, 669; S. Superchi, F. M inutolo, D. Pini and P. Salvadori, J. Org. C hem., 1996, 61, 3183.
5 A. K awai, O. Hara, Y. H amada and T. Shioiri, Tetrahedron Lett., 1988, 29, 6331; J. P. Gesson, J. C. Jacquesy and M. M ondon, Tetrahedron L ett., 1989, 30, 6503; Y. H amada, A . K awai, T. M atsui, O. H ara and T. Shioiri, Tetrahedon, 1990, 46, 4823.

6 (a) C. M ukai, M. M iyakawa, A . M ihira and M. H anaoka, J. Org. C hem., 1992, 57, 2034; (b) C. M ukai, I. J. K im and M. Hanaoka, Tetrahedron: A symmetry, 1992, 3, 1007; C. M ukai, I. J. K im, E. F uru and M. H anaoka, Tetrahedron, 1993, 49, 8323.

7 (a) C. M ukai, I. J. K im and M. H anaoka, Tetrahedron Lett., 1993, 34, 6081; C. M ukai, S. H irai, I. J. K im, M. K ido and M. Hanaoka, Tetrahedron, 1996, 52, 6547; (b) C. Mukai, M. M iyakawa and M . H anaoka, Synlett, 1994, 165; (c) C. M ukai, S. H irai, I. J. K im and M. H anaoka, Tetrahedron Lett., 1996, 37, 5389.
8 C. G ennari, M . G. Beretta, A . Bernardi, G. M oro, C. Scolastico and R . Todeschini, Tetrahedron, 1986, 42, 893.
9 D. J. Cram and D. R. Wilson, J. Am. Chem. Soc., 1963, 85, 1245; N. T. A nh, Top. Curr. Chem., 1980, 88, 145.

10 Eantiomeric excess was determined to be $>98 \%$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy using a shift reagent, tris[3-(heptafluoropropyl-hydroxymethylene)-(+)-camphorato]europium(iII)
11 P. A. Grieco, T. Oguri and Y. Yokoyama, Tetrahedron Lett., 1978, 419.

12 P. H. J. Carlsen, T. K atsuki, V. S. M artin and K . B. Sharpless, J. Org. C hem., 1981, 46, 3936.
13 For example, H. N. Weller and E. M. G ordon, J. Org. Chem., 1982, 47, 4160; D. M. K alvin and R. W. Woodward, J. Org. Chem., 1985, 50, 2259; S. K ano, Y. Yuasa, T. Yokomatsu and S. Shibuya, J. Org. Chem., 1988, 53, 3865; S. K ano, T. Yokomatsu, H. I wasawa and S. Shibuya, Chem. Pharm. Bull., 1988, 36, 3341; T. Shioiri, Y. Hamada and F. M atsuura, Tetrahedron, 1995, 51, 3939, and references cited therein.
14 An analogue [ref. 3(d)] of compound 15 with a different acyl protecting group (3-chlorobenzoyl instead of benzoyl) on the secondary hydroxy moiety has already been synthesized and transformed into AI-77B.
15 C. Gennari and P. G. Cozzi, Tetrahedron, 1988, 44, 5965.
Paper 6/05901E
Received 27th A ugust 1996
Accepted 13th N ovember 1996

